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At the present time there is a number of works devoted to the investigation
of optimum dynamical systems. In [1 to 4], for example, the question of
selecting the system operator to which the greatest accuracy of transforming
the input action corresponds, is considered. In [5 to 8] and others, the
problem of selecting the operation law of a control which will guarantee the
best approximation of the perturbed motion of an object to a prescribed prog-
ram, is solved. The latter is usually found from the condition of achieving
the extremum value of some characteristic of the object under the so-called
rated motion conditions. The works [9 to 11] as well as those metioned in
their bibllography are devoted to looking for optimum, in thils sense, flight
conaitions of flying vehicles.

The accuracy of realizing programed motion depends not only on the proper-
ties of contrcls but also on the properties of the programed motion itself
and on the rated parameters of the system. It may sometimes appear to be
expedient to raise the accuracy of the system motion on the account of change
in 1ts programed motion and parameters. Such a change leads to a reduction
in the level of the characteristic of the obJect whose extremum is to be
achlieved but the accuracy in its performance 1s raised.

The present study 1s devoted to seeking the control functions and para-
meters which are optimum in this last sense.

1, Let the equations .1
X =filt, Xy, .. X, Uy oo o, Uy 4y, .. wAu Py .o, P) (i=1,...,n)
with the initial conditions
X; (t) = Xy (i=1,...,n (1.2)

describe the system motion.

Lhere ¢ 1s the time, X, (1 = l,..., n) the phase coordinates which are
continuous functions of time; U, (J =1,..., r) are the random control func-
tions of time with the canonical expansion (1] of the form

U]- () = u; (& + kgl ijEJk 0

Here u,(z) is the mathematical expectation of the function U,(t),gn(t)
is a given coordinate function, ij =V;(i=1,...,mr) are uncorrelated
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random variables with mathematical expectations zero and given variances
D", Xios Ay, P, are random variables with the mathematical expectations x,,,
a;, py and the given variances D5, D% Do .

The parameters x,,, pis t, are given and the g,,...,a, are among the
control factors. The random variables
o o ©
Vi Xyg=Xy— 1y Ay =A4;—9, Py =Pi—p

are considered uncorrelated. The prescribed functions f,,...,f, in (1.1)
are assumed to be contunous together with their derivatives to third order,
inclusively.

Because of the conditions of the formulated problem, the coordinates
X,(t) (¢t =1,..., n) will be random functions of time with the mathematical
expectations x, (t) {t =1,..., n) and variances Df (¢) (£ = 1,..., n).

Let us consider V,, X0, A, P,° to be so small that linearization of
(1.1) with respect to these parameters and of the function
o
X, =X —z ()
is possible.
Then we obtain for the determination of x,(¢) ana’ x,°(¢) [1]

2= it Ty o ooy Ty Uns o s Upy Gpa e e By Pry - - o Py)s z; () = i
(i=1,...,n (1.3)

. hid o s q -3 Y o
X7 =2 apX, + X BuV+ D Tadi + D LuPry X lt) = X
K=1 k=1 k=1 k=1
(i=1,...,n (1.4)

Here the ay, By Tix» Ly @re known functions of the parameters t, x,, u,
a, and p, .

Equations (1.3) describe the programed motion of the system, the mean
realization of the rapdom process [, (¢), U,(¢)].

Let us assume the existence of the set of controls
uj(t)(/'=1,...,r),aj G=1,...,9

which may transform the system from the initlal state x,, into a f'nal state
characterized by the relaticns

Py (@ras o o« Tpyy G1y - - 0 Bgs P1o e o p) =0, z;; = 7; (t)

G=1,..,ni=1,...k k<n+9 (1.5)

Here ¢, the final value of the time, is a given numoer, the vy, are known
continuous functions with continuous derivatives to third order, inclusively.

Equations (1.4) as well as the parameters

‘l’j;—lpj(xll’""aniAly'-'yAq’Plv'-qu) (].=1,...,k)
which may be evaluated to second order accuracy by means of the tormulas
"oy I 9, Yooy,
- —d 5 io40 S _ ' po
V= 2 oz;, Xy + 2 da; A+ 24 ap; Py (1.6)
i=1 i=1 i==1

permit the finding of the deviation of realizing the random procesc (rom the

programed state. As we see, this deviation depends not only on the randon
rarameters but also on the characteristics of the programed motion.

It is natural to attempt to find the control wy,; ..., Up, Grs-v+y Qg LY
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which the least level of scattering of the realization of the random procesas
[x,(¢t)] and the random parameters ¥, (J =1,..., k) will correspond. We

shall designate the control satisfying such a constraint as optimum in the
mean.
2. Let us consider that the functional
1

n r x
1= (Z bDF+ 2 miuf) a+ ) gD @.1)
i=1 i=1

t, i=1

characterizes the scattering level of the trajectories

[x,(¢)], of the para-
meters Y,

J =1,..., k) and the measure of the control effects.

Here b,, m;y and g, are non-negative weight constants, D,* and D,' the
variances of the functions X;(t) and the parametepns ¥, .

Then the problem of selecting the optimum, in the mean, control for a
bounded level of }he control effects u;,..., u, reduces to seeking the func-

tions wu,, %,, X,° and the parameters g, satisfying (1.3) and (1.5) and cre-
ating the minimum for the functional (2.1).

Let us transform this variational problem to a form more counvenient for
solution.

It 1s seen from (1.4) that X:(t) may be written as

n mr q v
X°= 2 0 Xyo + 2 ToiVie + Z Ny =+ Z N1 P° 2.2)
k=1 k=1 k=1 k=1

Here the nf,nvf,naf and npf are determined from Equations

dnik n
Ilil\' = T — Zaijnjk =0 (l, k = 1, . e ey n)
i=1
. dn,~ n X _
Hyi=-—g3— Zai;mvj — B =0 (i==1,..,nk=1,...,mr) (23)
f A
! dnaF n ) .
Hai"E dtl_ Z‘]aijna;"-'fik:o (=1, . ,mk=1,...9)
=1
ot :
pl;_:-___d%._ > ai,-n,,? Ly =0 (i=1,....,nk=1,...,%)
=1

) =0 (k) nf)=1 (=8, 1) =nl)="1iw=0 @4
We have from (2.2)

n mr q v
DA = D mMg + D) D+ D) 2D+ DY (g P
k=1 k=1 k=1 k=1
It follows from (1.6) and (2.2)
n mr q v
V= 3 epXp+ D dyV + D LA D) hyPy
k=1 b= k=1 k=1

Here %krdﬂzlmvlﬁk are known functions of the final values of the varia-
bles 4, ., & k k . kand the parameters g, and p, . Hence, we have
A1 Ngi Nai» ]p‘l
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n mr q v
D* = Dl eiDys+ D diD S+ D) IED 4 D) hiDY
k=1 k=1 k=1 k=1

Taking account of the obtained expressions for D;*, Di%, let us write the
functional (2.1) as "

I = j Fdt + @ (2.5)
fo B ook ok ok
Here F 1s a known function of the variables Ni s Npis» Nai» Mpi» ¥4 and the

parameters b;, mi,Di%D‘ , D, ’kDip‘k and @ 1s a known function of the final
\;)a'{.,ueDs'acht.::e variables g .0/, 1,5, nt, "lp’{ and the parameters gy, a;, p;, D.f,
1 1t i
The problem under consideration may %e fgrmq}atid as a variational prob-
lem to determine the functions %i* i» Mi'» Mois Noi» Mpi and the parameters g,

satisfying Equations (1.3) to (1.5), (2.3),-{2.4) and creating for the mini-
mum for the functional (2.5).

3, Let us represent the system of necessary conditions as follows [12,

13]:

OFf L o ety .m, g0l <i=1, o
oz, dt  og, rrrn T ek T de gg k=1, ,q)
E“iﬁ:=0 (i, k=1 OFt  d R i =1,...,n
o ot PES L Gk T (kzi, ,v)
oF 4 oFt i=1,...,m aF* .

mr—ar a0 (2 ) = d=nn

* 4 %k .
%3—{— S%%dt =0 (i = 1, " ey 9), Ai]f|+ %%; = (i = 1’ e n) (3'1)

ll
L i=1,...,n; oo* i=1,...,n;
k . ! » T k y y Ny
Wt "] =0 <k=1 ) [}"““La"]-:() <k~1 )
L "1y, N Mai 11, =1,...,q9,

[, 0D* i=1,...,n; . oDp* i=1,...,n
}"IA. -0 ( ’ ’ 3)’ [}\’A -0 ( ’ y ) P
vl+a‘]v’;] =1,...,mr, pl+ anp’: t k=1, ey

L

n
F— 3 Az — NAFE@f = DIAF 0 — D g — DA )y ],l =0 (3.3
i=1 ik i,k ik

L

i,k
F* = F 4 Z’“‘l (i — f’l) -+ Z}"ikHik + Ekv’;HvI;:'*_ Exalgﬂalg'{'zxplgllpl;
i ik ik i,k i,k (34)

(I)*:(I’+Z”i‘l’i
i

A AL AE A MK
Here the Ay Aj s Mpiy Agis Mpi-and v; are Lagrange multipliers; the relation
(3.3) holds if ¢, 1is arbitrary.

The necessary optimization conditions together with the original equations
of the problem permit finding the optimum, in the mean, control [u,(t), a,]
and the corresponding programed motion of the system. Then the character-
istics of the optimized random process are determined from {1.4) and (1.6).

In conclusion, let us note that by virtue of the recliprocity of the vari-
ational problems, the optimization conditions written above permit also the
solution of the problems of determining the extremum of some characteristic
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of the programed motion for a given value of the functional (2.5), i.e. for
given accuracy of performing the programed motion.

4, As an example, let us consider a flying vehicle for which the motion of
the center of mass in the vertical plane under constant gravity and zero
aerodynamic forces 1s deacribed by the equations
X = o u, X = X, Xy = 0 sin w—g, Xi(0) = X3 (0) = Xs(0) = 0 (4

Here x,and ¥, are the horizontal and vertical components of the velocity;
Xa 1s the rlight altitude; ¥ the relative velocity of the escaping combus-
tion products of the englne, is a given number; P a random variable with a
given mathematical expectation p and variance D characterizes the inten-
sity of fuel consumption; u the angle of slope of the engine thrust to the
horizon is not a random control function; g 1s the acceleration of gravity.

From (4.1) we have the following system to determine the programed motion
and deviations from it.

. . P . .
W= Su @ =y rsinu—g, Ty = 1, 2
7 (0) =2, (0) =23 (0) =0 '
o WPO . WP° > o ~0
X, = (T—__’-—T)z—cos u, X = mSln ufi 8, X =Xx3 4.3)

X0 =X,(0) = X, (00 =0
Here X;°= Xi_”p P°= P—p, z; 1s the mathematical expectaticn of the
functions x, . )
The posslibility of the followlng representation of the function X0

Xy ° =nP° (i=.1,2,3) (4.4)
is seen from (4.3). Here T s My and ns; are determined from the equations

w . w . -
WSS W =g ppsinubiln ny =

(4.5)
MO0 =mn0) =130 =0

The final values of the functions X,P= x° (¢,) and their variances Dy,
are written as

Xy =P Dy =ngD

Let the parameter
D = (Eﬂhf + ga"lgf + gs"lgf) D (46)

where g,, g, and g, are non-negative welght constants taken as the measure
of the scattering of the motion characteristics at the end of the trajectory.
Then considering this parameter to be glven, it is possible to solve various
problems, optimum in the sense of [9 to 11], under the additional boundary
condition (4.6), .compliance with which means the determination of optimum
flight conditions of a flying vehicle with a scattering level of its final
characteristics given in advance.

For example, let us consider the problem of selecting the control u(t)
which will guarantee achievement of the maximum horizontal velocity component

zy =2, (t) 4.7
for given x,(0), x,(0), x3(0) and ¢, final values of the functions

z3 (8) = x4, 7y (8) = zg (4.8)
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and a given scattering parameter § .

This problem wlll be a varlational problem of Mayer type to seek the func-
tions Uu, y, %3, 3, M, N2 and M3, satisfying Equations (%.2), (4.5), (4.6) and
(4.8), and creating the maximum for the functional (4.7). Its solution leads
to the following expressions determining the optimum control

phy (1 — pt) + py

R (=) T
Ay = —1, Hy = — 2vDgmy, By = — 2vDggna
he=Cy+Cy(ty — 1), Ha = Mgy -F Pg (8 — 1), a1 = — 2vDgyn

Here Ay, Az, 1, Mg, Il and v are Lagrange multipliers.

For comparison, let us note that if the problem is solved without the

constraint (4.6), the expression for tan y is obtained as a linear function
of time,
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